
Michael de Raadt Programming Strategies Reference

1

Programming Strategies
Reference

Michael de Raadt

Michael de Raadt Programming Strategies Reference

2

Introduction

This document contains a number of useful strategies relevant to an introductory

programming course, but also necessary to solve problems of a more complex nature.

The list is not complete, but contains strategies that are well defined and malleable

enough be manipulated to suit particular problems.

This appendix should be seen as a tool-kit for solving problems at a sub-algorithmic

level. The plans at this scale usually do not constitute an entire algorithm (although

some approach this level) but usually form part of a greater algorithm.

This reference is not meant to be a complete curriculum; it is merely a short reference

guide.

Certain programming language knowledge (constructs and functions) are required

before each plan can be applied. These dependencies are listed in italics at the

beginning of each plan.

Table of Contents

Plan Integration .. 3

Plan 1. Average Plan .. 3

Plan 2. Divisibility Plan ... 4

Plan 3. Cycle Position Plan .. 6

Plan 4. Number Decomposition Plan ... 7

Plan 5. Initialisation Plan ... 7

Plan 6. Triangular Swap Plan ... 8

Plan 7. Guarded Exception Plans (including Guarded Division Plan) 9

Plan 8. Counter Controlled Loop Plan ... 10

Plan 9. Primed Sentinel Controlled Loop Plan .. 11

Plan 10. Sum and Count Plans ... 12

Plan 11. Validation Plan... 13

Plan 12. Min/Max Plans ... 15

Plan 13. Tallying Plan .. 16

Plan 14. Search Algorithm ... 18

Plan 15. Bubble Sort Algorithm ... 19

Plan 16. Command Line Arguments Plan .. 21

Plan 17. File Use Plan .. 22

Plan 18. Recursion Plans (single- and multi-branching).. 23

Strategies Index .. 27

Michael de Raadt Programming Strategies Reference

3

Plan Integration

Before introducing the plans, it is important to discuss how plans can be integrated

into a whole solution. There are three ways of combining plans.

Abutment

Abutment is placing plans or steps within plans one after the other. The sequence of

these defines the necessary order that must be followed to be successful. For example,

if we wish to perform calculations on user inputs, we must first get the inputs before

we can perform the calculation.

Merging

Often two plans need to be achieved together. Step within the two plans may be

intertwined in their order so that they can be achieved together. A processor can only

achieve one instruction at a time so these steps cannot be achieved simultaneously,

but the steps can be placed one after another in arbitrary order. For example, if we

were wishing to calculate an average of a set of numbers we need to count the

numbers and sum the numbers. Rather than inputting and processing the set of

numbers twice, we can merge these two plans and achieve them together.

Nesting

Where one plan is contained within another, the inner plan is said to be nested inside

the outer plan. For example, if we were summing numbers we may nest the summing

plan within one of the specific looping plans. If we were to calculate an average, we

may nest this within a Guarded Division plan to avoid division by zero in the average

calculation.

Plan 1. Average Plan

This plan requires an understanding of the division operator.

Finding the average of a series of numbers is a common task in programming. To

calculate the average we need the sum of the numbers and the count of the numbers.

Assuming we have these two values we calculate the average by dividing the sum by

the count.

average = sum / count

Here is an example in the context of a full program.

#include <stdio.h>

int main() {

 int sum = 15; // Stores the some of some numbers

 int count = 3; // Stores the count of those numbers

 int average; // Will store the calculated average

 // Calculate the average

 average = sum / count;

 // Output the average

 printf("Average: %i\n", average);

}

Michael de Raadt Programming Strategies Reference

4

Here is the output of the above program.

Average: 5

Plan 2. Divisibility Plan

This plan requires an understanding of the mod operator and selection statements.

If we wish to see if one number is evenly divisible by another, we can use the mod

operator. If this operator produces a result of zero we know that the first operand is

divisible by the second. The mod operator gives us the remainder after division. If

there is no remainder we know that the first operand is divisible by the second. In a

real world application, if we were to group objects, say apples, we may wish to know

if we can form complete groups from the number of apples at hand. If we have 12

apples we can divide this into 4 groups of 3 with no remainder.

We can apply the same to numbers in code, for example…

12 % 3 results in 0 so we can say 12 is divisible by 3

We can also see when a number is not divisible by another. If we group 12 apples in

to groups of 5 we are left with 2 apples remaining.

Again we can apply the same to numbers in code, for example…

12 % 5 results in 2 so we can say 12 is not divisible by 5

Michael de Raadt Programming Strategies Reference

5

Here is an example in the context of a full program.

#include <stdio.h>

int main() {

 int numberToCheck = 12; // A number to check for divisibility

 int firstDivisor = 3; // A sample divisor to use

 int secondDivisor = 5; // Another sample divisor to use

 int result; // Will store the result of mod operation

 // Check the divisibility using first divisor

 result = numberToCheck % firstDivisor;

 printf("Result using %i: %i\n", firstDivisor, result);

 // Check the divisibility using second divisor

 result = numberToCheck % secondDivisor;

 printf("Result using %i: %i\n", secondDivisor, result);

}

Here is the output of the above program.

Result using 3: 0

Result using 5: 2

The above results show that 12 is divisible by 3 but 12 is not divisible by 5.

Here is a program that tests if numbers are even. An even number is divisible by two.

#include <stdio.h>

int main() {

 int firstNumberToCheck = 4; // Number to check divisibility by 2

 int secondNumberToCheck = 5; // Another "

 // Check if first number is even

 if(firstNumberToCheck%2 == 0) {

 printf("%i is even\n", firstNumberToCheck);

 }

 else {

 printf("%i is not even\n", firstNumberToCheck);

 }

 // Check if second number is even

 if(secondNumberToCheck%2 == 0) {

 printf("%i is even\n", secondNumberToCheck);

 }

 else {

 printf("%i is not even\n", secondNumberToCheck);

 }

}

Here is the output of the above program.

4 is even

5 is not even

Michael de Raadt Programming Strategies Reference

6

Plan 3. Cycle Position Plan

This plan requires an understanding of the mod operator.

It is possible to form a series of numbers into a cycle.

Each number will then have a relative position within

the cycle. For example we can to take a series of

numbers beginning with zero and group them by fours.

Each number would then have a relative position within

each cycle from zero to three. In the figure above we

see such a cycle. The numbers are in four groups and

each group has a relative. Numbers with position 0 are

{ 0, 4, 8, … }, numbers with position 1 are

{ 1, 5, 9, … } and so on.

We can determine the position of a number in a cycle using the mod operator. As a

general rule numbers can be brought into a cycle of size n by applying mod n.

x % n gives the position of x in a cycle of size n

For example if we want to create a size 3 we can apply mod 3 and we can then find

positions of numbers in this cycle.

...

 9 % 3 gives 0

10 % 3 gives 1

11 % 3 gives 2

12 % 3 gives 0 …and so on.

One useful application of this idea is to bring random numbers into a range. In the

C/C++ language random numbers are generated in a range from 0 to the largest

possible integer value (with 4 byte integers this is 2147483647). If we want to

generate a random number in a specified range, we can take the random number given

by the standard library function rand() and find its position in a specified cycle.

x % n gives the a value in the range 0 to n-1

If we wanted to have a random number between 0 and 4 we can apply mod 5.

myRand = rand() % 5;

If we want a random number between 1 and 5 we can shift the previous range by

adding 1 to the result.

myRand = rand() % 5 + 1;

We can also shift such a range in a negative direction. The diagram below shows a

range and how it can be visualised when shifted.

0 1 2 3 4

51 2 3 4

0 1 2-2 -1

0 to 4

1 to 5

-2 to 2

x % 5

x % 5 + 1

x % 5 - 2

0

7

1

4

2

3

5
6

8

9

Michael de Raadt Programming Strategies Reference

7

We can create a function that generates a random number between 1 and 10 as

follows.

int rand1to10() {

 return rand()%10 + 1;

}

We can generalise this function to apply settable upper and lower limits.

int myRand(int lowerLimit, int upperLimit) {

 return rand()%(upperLimit-lowerLimit+1) + lowerLimit;

}

Plan 4. Number Decomposition Plan

This plan requires an understanding of the mod and division operators.

We can use the division and mod operators to tear numbers apart. For example, if we

want to find the last two digits of 12345 we can apply mod 100. For decimal digits the

following rules apply.

x % 10 gives the last digit

x % 100 gives the last two digits

x % 1000 gives the last three digits

x % 10000 gives the last four digits …and so on.

Applying a similar idea we can discover the first digits of a number using the division

operator. Using a 5 digit number, the following rules apply.

x / 10000 gives the first digit

x / 1000 gives the first two digits

x / 100 gives the first three digits

x / 10 gives the first four digits.

To find the third last digit of a decimal number we can apply the following operation.

thirdLastDigit = x % 1000 / 100;

Plan 5. Initialisation Plan

This plan requires an understanding of variables and the assignment operator.

Initialisation is commonly applied within other plans.

Failing to initialise variables before they are used can lead to errors.

It is recommended that you initialise all variables when you declare them.

In the following example sum is initialised to 0 as this is an appropriate sum before

summing commences.

int sum = 0;

Michael de Raadt Programming Strategies Reference

8

In some plans it may be necessary to initialise an array of items. For instance, here we

are initialised an array used to tally letters in a message.

#include <stdio.h>

int main() {

 int letterCount[26]; // Array to store count of letters

 int i; // Iterative counter

 // Initialise array of counts

 for(i=0; i<26; i++) {

 letterCount[i] = 0;

 }

 ...

}

Plan 6. Triangular Swap Plan

This plan requires an understanding of variables and the assignment operator.

Consider how you swap two items. Imagine two pencils in front of you. To swap their

positions you would pick up one with one hand, the second with your other hand and

then place each in their new positions.

Position 1 Position 2

A computer can only perform one action at a time. Now imagine that you only have

one hand; how would you swap the positions of the two pencils now? Keep in mind

also that when a variable is assigned a new value, the old value is replaced and cannot

be accessed later. Attempting to swap using the above method will result in two

copies of the same value.

Temp Pos

Position 1 Position 2

1
Temp Pos

Position 1 Position 2

2

Temp Pos

Position 1 Position 2

3

To achieve a swap a temporary position is needed. One of the pencils could be moved

to the temporary position; the second pencil could be moved to its new location;

finally the first pencil could be moved from the temporary position to its new

position.

Michael de Raadt Programming Strategies Reference

9

Here is an example in the context of a full program.

#include <stdio.h>

int main() {

 int firstPosition = 5; // First position containing value to swap

 int secondPosition = 6; // Second position containing value to swap

 int tempPosition; // Temporary position for swap

 // Output the numbers after the swap

 printf("Before Swap...\n");

 printf("First: %i, Second: %i\n", firstPosition, secondPosition);

 // Swap the two numbers in a triangular swap

 // 1. Copy the value from the second position to temp

 tempPosition = secondPosition;

 // 2. Copy the value from the first position to the second

 secondPosition = firstPosition;

 // 3. Copy the value from the temp position to the first

 firstPosition = tempPosition;

 // Output the numbers after the swap

 printf("After Swap...\n");

 printf("First: %i, Second: %i\n", firstPosition, secondPosition);

}

Here is the output of the above program.

Before Swap...

First: 5, Second: 6

After Swap...

First: 6, Second: 5

The above results show the values are swapped and not duplicated.

Plan 7. Guarded Exception Plans

(including Guarded Division Plan)

This plan requires an understanding of the if statement.

When a program compiles and runs, there are still opportunities for things to go

wrong. Usually such logic errors occur around or outside boundaries of the data

being worked on. Such boundaries include:

• Absence of data where some is expected,

• Negatives or zero where positives are expected,

• Too much data where a finite amount is expected, and

• Values outside an acceptable range.

To create reliable, "bullet proof" programs, these boundary conditions need to be

considered.

There are also time where a program may encounter data that, when used in

operations, will cause the operating to stop the program.

In mathematics, if a number is divided by zero the result is undefined. If a program

attempts to divide by zero, the operating system will close the program down.

Whenever we perform a division where the second operand could be zero, we must

Michael de Raadt Programming Strategies Reference

10

test the second operand before performing the division and prevent the division from

taking place if it is zero.

Here is an example in the context of a full program.

int main() {

 int firstOperand; // First operator for division

 int secondOperand; // Second operator for division

 // Gather inputs for division

 printf("Enter two integers for division: ");

 scanf("%i %i", &firstOperand, &secondOperand);

 // Test second operand

 if(secondOperand != 0) {

 // Perform division

 printf(

 "%i divided by %i is %i",

 firstOperand,

 secondOperand,

 firstOperand / secondOperand

);

 }

}

Here is the output of the above program when the value 5 is given as the second

operand.

Enter two integers for division: 10 5

10 divided by 5 is 2

When a zero value is given for the second operand, no output is produced and the

program ends.

Enter two integers for division: 10 0

Here is another example that incorporates Guarded Division into a function which

calculates an average from a given sum and count.

int average(int sum, int count) {

 // Test against dividing by zero

 if(count == 0) {

 return 0;

 }

 // Perform division as normal

 else {

 return sum / count;

 }

}

Plan 8. Counter Controlled Loop Plan

This plan requires an understanding of looping constructs.

A Counter Controlled uses a counter variable which is incremented until a set number

of repetitions is achieved. The loop will continue regardless of any other event that

may occur during repetition.

The following example reads in 10 integers from a user and calculates the sum. The

program will continue regardless of what the user inputs. We usually use for loops

to achieve counter controlled loops.

Michael de Raadt Programming Strategies Reference

11

#include <stdio.h>

const int NUMBER_OF_INPUTS = 10;

int main() {

 int i = 0; // Loop iterator

 int sum = 0; // Sum of numbers input

 int userInput; // Input from user

 // Calculate the sum

 for(i=0; i<NUMBER_OF_INPUTS; i++) {

 printf("Enter a number: ");

 scanf("%i", &userInput);

 sum += userInput;

 }

 // Output the sum

 printf("Sum: %i\n", sum);

}

Counter Controlled loops are often used with arrays. When this happens the loop

iterator can serve the dual purpose of being an index into the array. For an example of

this see the initialisation of an array in Plan 5.

Plan 9. Primed Sentinel Controlled Loop Plan

This plan requires an understanding of looping constructs.

A Primed Sentinel Controlled Loop allows repetition until an event takes place or

some target value (the sentinel) is discovered.

Here is an example including a primed sentinel-controlled loop. Not that the loop tests
userInput to determine if it should continue looping. The variable is being
compared to the sentinel value SENTINEL. The value of userInput is primed with
an initial user input before the loop begins. Although this adds some redundancy (the
input statement appears twice) there can be efficiency savings made when the user
enters the sentinel value in the first instance (which is not uncommon).

#include <stdio.h>

const int SENTINEL = 9999;

int main() {

 int sum = 0; // Sum of numbers input

 int userInput; // Input from user

 // Get the first user input

 printf("Enter a number (%i to end): ", SENTINEL);

 scanf("%i", &userInput);

 // Calculate the sum

 while(userInput != SENTINEL) {

 sum += userInput;

 printf("Enter a number (%i to end): ", SENTINEL);

 scanf("%i", &userInput);

 }

 // Output the sum

 printf("Sum: %i\n", sum);

}

Michael de Raadt Programming Strategies Reference

12

If the user where to enter the sentinel value as
their first input, the loop would never be entered.
The sum will also be correct as we are checking
each user input before it is added to the sum. This
avoids accidentally including the sentinel value in
the sum.

Plan 10. Sum and Count Plans

This plan requires an understanding of looping constructs and initialization.

Two frequently practiced programming activities

are summing or counting values. These simple

processes are easily achieved, but also easily

messed up. Both plans are achieved by using a

variable to accumulate the sum or count as values

are encountered. The key to both is assuring that

the sum or count variable is initialised to zero.

Failing to initialise such a variable will not stop

your program from compiling. In many instances

an uninitialised variable will have a value of zero

so the program will work, but it will not work all

the time. Just remember:

INITIALISE SUM AND COUNT VARIABLES

Below is an example which inputs and sums 5 numbers from a user. Note a Counter

Controlled loop is used to control repetitions as we know how many are desired

before the looping begins.

#include <stdio.h>

const int NUMBER_OF_INPUTS = 5;

int main() {

 int userInput = 0; // Input from user

 int sum = 0; // Sum of inputs INITIALISED

 int i; // Iterative counter

 // Counter Controlled loop to repeat inputs

 for (i=0; i<NUMBER_OF_INPUTS; i++) {

 // Prompt for input

 printf("Please enter an integer: ");

 scanf("%i", &userInput);

 // Add input to sum

 sum += userInput;

 }

 // Output the sum

 printf("Sum of numbers entered: %i\n", sum);

}

Success

Failure

Test

Input

Input

Body of Loop

Initialise Sum or Count to zero

CCL or SCL

Get Value

Add/Increment Sum/Count

…

Michael de Raadt Programming Strategies Reference

13

The output of the above program will resemble the following.

Please enter an integer: 1

Please enter an integer: 2

Please enter an integer: 3

Please enter an integer: 4

Please enter an integer: 5

Sum of numbers entered: 15

The following is an example which counts numbers entered by a user unit the value

9999 is encountered as a sentinel.

#include <stdio.h>

const int SENTINEL = 9999;

int main() {

 int userInput = 0; // Input from user

 int count = 0; // Count of inputs INITIALISED

 // Prompt for initial input

 printf("Please enter an integer: ");

 scanf("%i", &userInput);

 // Test for sentinel

 while(userInput != SENTINEL) {

 // Count input

 count++;

 // Subsequent input

 printf("Please enter an integer: ");

 scanf("%i", &userInput);

 }

 printf("You entered %i inputs\n", count);

}

The output of the above program will resemble the following.

Please enter an integer: 1

Please enter an integer: 2

Please enter an integer: 3

Please enter an integer: 9999

You entered 3 inputs

Plan 11. Validation Plan

This plan requires an understanding of loops and the scanf() function (or

equivalent).

 When dealing with inputs from users one can never

assume they will enter what is expected. It is therefore

important, for critical systems, to validate that users

have entered what they were expected to enter, and

repeat inputs, with appropriate messages, in the case

where users enter invalid inputs.

The plan shows here prompts the user and accepts an

initial input. The value is then tested as the condition

Initial Prompt

Test for Valid Input (SCL)

Clear Input Stream

Error Message Prompt

Initial Input

Subsequent Input

Clear Input Stream

Initial Prompt

Test for Valid Input (SCL)

Clear Input Stream

Error Message Prompt

Initial Input

Subsequent Input

Clear Input Stream

Michael de Raadt Programming Strategies Reference

14

of a Sentinel Controlled loop where the sentinel is a valid input.

Testing for validity can take two forms:

• Testing if a valid input type has been entered, for instance, if an integer is expected, it

is important to know that one has been entered.

• Once the first test has been satisfied, and where a value within a specified range is

expected, then the value of the input should be tested.

The user will usually enter a valid input in the first instance, but if they do not, in the

loop an error message is output and a subsequent input is gathered. This looping can

continue indefinitely until the user enters a valid value.

After each input (within the loop and after the loop) the input stream is cleared. If the

user has entered additional, unwanted data, either accidentally or maliciously, then it

will be removed before the next input is sought.

Here is an example function that gathers a valid integer in a specified range.

int getValidIntegerInRange(int lowestAllowed, int highestAllowed) {

 int userInput = 0; // Input from user

 int inputsGathered = 0; // Number of inputs from scanf()

 // Prompt for initial input

 printf(

 "Please enter an integer between %i and %i: ",

 lowestAllowed, highestAllowed

);

 inputsGathered = scanf("%i", &userInput);

 // Test for valid input

 while(

 inputsGathered !=1 ||

 userInput < lowestAllowed ||

 userInput > highestAllowed

) {

 // Clear standard input

 scanf("%*[^\n]");

 scanf("%*c");

 // Error message prompt

 printf(

 "Invalid input. "

 "Please enter an integer between %i and %i: ",

 lowestAllowed, highestAllowed

);

 inputsGathered = scanf("%i", &userInput);

 }

 return userInput;

}

Note that where inputs are gathered from the user, the return value from scanf() is

also captured. The function scanf() will attempt to input values according to the

format string, storing the values at the addresses provided. The return value of

scanf() is not an input value, but the number of values that have been successfully

input and stored. Using this we can determine if an appropriate value has been entered

by the user. See the description of scanf() in Appendix 1 for more detail.

Michael de Raadt Programming Strategies Reference

15

Plan 12. Min/Max Plans

This plan requires an understanding of looping constructs and the if statement.

To find the minimum or maximum from a number

of user inputs, it is not necessary to keep all

candidates, just the current min/max at any stage.

This process starts by selecting an initial value for

the min/max variable. If searching for a maximum,

initialise to the minimum possible value. If

searching for the minimum, initialise to the

maximum possible value. In that way the first

value encountered will become the new min/max.

Alternately the first value encountered (if it can be

guaranteed there will be a single value) can be used

as the initial value for the min/max.

As each candidate is presented within a loop (a counter controlled loop or sentinel

controlled loop) it needs to be compared with the current-max/min. If searching for a

maximum and the candidate is greater than the current maximum, then the candidate

will be assigned as the new current-maximum.

The following example inputs 5 numbers between 0 and the largest integer value

allowed. Inputs are gathered from a user using getValidIntegerInRange() as

shown in Plan 11 above. The maxNumber variable is used to store the current

maximum and it is initialised to 0 which is the smallest input allowed.

#include <stdio.h>

#include <limits.h>

const int NUMBERS_TO_READ = 5;

int getValidIntegerInRange(int lowestAllowed, int highestAllowed);

int main() {

 int i; // Iterative counter

 int input; // Validated Input from user

 int maxNumber = 0; // Current maximum initialised to

 // minimum possible value

 // Get inputs from user

 for(i = 0; i < NUMBERS_TO_READ; i++) {

 input = getValidIntegerInRange(0,INT_MAX);

 // Compare with current max and assign if greater

 if(input>maxNumber) {

 maxNumber = input;

 }

 }

 // Output the max

 printf("The maximum was: %i\n", maxNumber);

}

int getValidIntegerInRange(int lowestAllowed, int highestAllowed) {

 ...

Initialise Max/Min
to extreme opposite

CCL or SCL

Get Candidate

Test: Compare to Max/Min

…

Assign new Max/Min

Initialise Max/Min
to extreme opposite

CCL or SCL

Get Candidate

Test: Compare to Max/Min

…

Assign new Max/Min

Michael de Raadt Programming Strategies Reference

16

Note that each input is compared with the current maximum. Where a candidate is

found to be greater than the current maximum it replaces the current maximum and is

used for future comparisons.

Plan 13. Tallying Plan

This plan requires an understanding of arrays and looping constructs.

As well as being able to store individual values

in an array we can also use arrays to represent

counts of occurrences of a set of values.

For instance if I asked you to count each letter

in the sentence, "The cat sat on the mat", you

could set up a sheet and tally each letter in the

sentence. We start off with a blank sheet where

the tally each letter is empty (zero). We process

each letter in turn, crossing it off in the sentence

as it is processed. When we encounter a letter,

we place a tally mark in the box on our sheet

that relates to that letter. We can continue this

until all the letters are processed, at which stage

the number of tally marks next to each letter is

the number of occurrences of that letter.

We can apply a similar strategy in code using an array.

We will create an array with enough elements to

represent the set of values we are counting. If we

are counting the letters of the alphabet we need an

array with 26 elements. Before we start counting

we must first initialise the array to be sure the

count of all values is zero.

We can then process the values, matching them to

the relevant element of our array and 'adding

another tally mark' (incrementing the count) for

that value.

When we have processed all items of interest the

values in the array will be the counts of the items

encountered. If we wish we can output the counts

of the letters encountered.

A
B
C
D
E

The cat sat on the mat

F
G
H
I
J
K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

CCL

Initialise Array Element to 0

CCL

Initialise Array Element to 0

…

…

CCL

Output Element

CCL

Output Element

CCL or SCL

Match Item to Array Element
and Increment Element

Input Item to Count

CCL or SCL

Match Item to Array Element
and Increment Element

Input Item to Count

Michael de Raadt Programming Strategies Reference

17

The following code is an example of such a strategy.

#include <stdio.h>

#include <ctype.h>

const int SENTINEL = 9999;

int main() {

 int letters[26]; // Array for tallying letters encountered

 int i; // Iterative counter

 char inputLetter; // Letter from user

 // Initialise all array elements to 0

 for(i=0; i<26; i++) {

 letters[i] = 0;

 }

 // Process the user input until end of line

 printf("Please input a sentence...\n");

 scanf("%c", &inputLetter);

 while(inputLetter != '\n') {

 if(isalpha(inputLetter)) {

 letters[tolower(inputLetter)-'a']++;

 }

 scanf("%c", &inputLetter);

 }

 // Output occurrences of letters which have occured once or more

 for(i=0; i<26; i++) {

 if(letters[i] > 0) {

 printf("%c: %i\n", 'a'+i, letters[i]);

 }

 }

}

Notice first that the array is initialised, the values are counted and then the counts are

output. See the language reference for descriptions of isalpha() and

tolower().

The array used is an array of integers, which is appropriate as we are storing counts of

letters and not the letters themselves. The array elements are referenced by index and

the indices are integers, so this means we have to translate each character into a

number to find the array element that relates to that letter. We can associate each

alphabetic letter with a number in order starting from 'a' being 0, 'b' being 1 and so on.

To achieve this we can convert each letter to lower case and deduct the value of 'a' as

follows.

'a' – 'a' → 0

'b' – 'a' → 1

'c' – 'a' → 2

...

'z' – 'a' → 25

Once we have a letter's position in the alphabet we can use this as the index into the

array to access the array element that relates to that letter of the alphabet. When we

are counting a particular letter, we will translate it into a number, find the array

element and increment its value. This is achieved in the statement from the above

example shown below.

 letters[tolower(inputLetter)-'a']++;

Michael de Raadt Programming Strategies Reference

18

Plan 14. Search Algorithm

This plan requires an understanding of looping constructs and arrays.

This plan and the next are approaching the scale

of a full algorithm and could exist independently

as useful functions.

The key to efficient searching is to search only

the parts of the search space (say the elements of

an array) necessary to discover the value sought.

Of course, if the location of the target value is

unknown then the amount of searching required

cannot be predicted, but, if we are seeking the

presence of a target value we should be able to

stop searching after we discover the value. In the

case that the target value is not present,

searching will continue until the end of the

search space is reached.

One way to achieve this is through a combination of a sentinel controlled loop that

searches for the target value as a sentinel and a counter controlled loop that stops

when the end of the search space is reached. We can use a Boolean flag to control the

test for the target value and the value of this flag after the search will tell us if the

target value is present. Here is an example function that searches an array for a target

value.

bool search(int targetValue, int array[], int arrayLength) {

 bool found = false; // Boolean search flag

 int i = 0; // Iterative counter

 // Search until found or end of array

 while(!found && i<arrayLength) {

 // Match array element to target value

 found = array[i]==targetValue;

 i++;

 }

 return found;

}

Initialise found flag

Loop while found flag is false and
not at end of array

Get Candidate

Compare to target,
setting found flag

…

Use found flag

Michael de Raadt Programming Strategies Reference

19

Of course, this approach will only work if we are seeking the presence of a target

value. If we wish to count the occurrences of a value we will need to search the entire

search space, so no saving can be made.

int countValues(int targetValue, int array[], int arrayLength) {

 int i; // Iterative counter

 int count=0; // Times targetValue has been encountered

 // Search entire array for occurrences of target value

 for(i = 0; i < arrayLength; i++) {

 if(array[i] == targetValue) {

 count++;

 }

 }

 // Return the count of occurrences

 return count;

}

Plan 15. Bubble Sort Algorithm

This plan requires an understanding of looping constructs and arrays.

There are a many different algorithms

which can be used to put elements in

order. The Bubble Sort is presented

here as it is easy to comprehend and

use.

This algorithm works by looping

through the array comparing each

element with the following one, and

swapping the values where necessary.

Each pass through the array brings it

closer to being sorted. The looping

and swapping process must occur as many times needed to ensure the array is

completely sorted. If we loop through the array n-1 times (where n is the length of the

array), it is guaranteed to be sorted.

The process can be summarized as follows.

• Start at beginning of the array

• Compare first and second elements

• If out of order swap

• Compare the second and third elements

• If out of order swap

• Continue comparing adjacent pairs in the array, from beginning to end; this

constitutes a single pass.

• Perform n-1 passes to completely sort the array.

CCL (n -1 passes)

CCL (a single pass)

Test if adjacent elements
are out of order

Swap out of order elements

Michael de Raadt Programming Strategies Reference

20

Consider the following array.

7 8 4 5 2

Starting at the beginning we compare the first two values. They are in order so we do

not swap them. The second and third values are out of order and must be swapped.

The outcome is shown below.

7 4 8 5 2

We continue comparing and swapping adjacent values if needed until we get to the

end of the array.

7 4 5 8 2

7 4 5 2 8

The state of the array after one pass is shown above. We will complete four passes

through the array. The state of the array after each pass is shown below.

4 5 2 7 8

4 2 5 7 8

2 4 5 7 8

After second pass

After third pass

After fourth (final) pass

Michael de Raadt Programming Strategies Reference

21

The following program will perform a bubble sort on an array of integers to put them

in ascending order.

#include <stdio.h>

const int MAX_LENGTH = 5;

int main() {

 int array[MAX_LENGTH] = {9,8,2,5,4}; // Unsorted array

 int i, j; // Loop iterators

 int temp; // For swapping

 // Pass through the array MAX_LENGTH-1 times

 for(i = 0; i < MAX_LENGTH-1; i++){

 // For each pair of consecutive numbers

 for(j = 0; j < MAX_LENGTH-1; j++) {

 // Test if the pair is out of order

 if (array[j] > array[j+1]) {

 // Swap using triangular swap

 temp = array[j];

 array[j] = array[j+1];

 array[j+1] = temp;

 }

 }

 }

 // Output the array after sorting

 for(i = 0; i < MAX_LENGTH; i++){

 printf("%i ",array[i]);

 }

 printf("\n");

}

Notice the above code contains two for loops, one inside the other. The outer loop
ensures that n-1 passes are performed. Each iteration of the outer loop, the inner
nested loop compared each adjacent value in the array and swaps it if necessary.

Bubble sort is not the most efficient sorting algorithm. For large and unordered data
faster sorting algorithms are available. The efficiency of the Bubble Sort algorithm
can be improved by applying the following two modifications.

• Reduce the number of comparisons by one for each pass. After the first pass the

greatest value will be pushed to the rightmost element. After two passes, the final two

elements will contain the two greatest values in sorted order and so on. To achieve

this, the value of i can be deducted from the upper limit of the inner loop.

j < MAX_LENGTH-1-i;

• For an array that contains values that are nearly already sorted, it is possible to reach

a sorted state before n-1 passes have been made. The array can be determined to be in

a sorted state when a complete pass has been performed in which no swaps are made.

A Boolean flag swapsMade can be used which is set to false at the beginning of

each pass. If it is still false at the end of the pass, no swaps have been made and the

array is in sorted order. This flag can be incorporated into the test of the outer loop.

Plan 16. Command Line Arguments Plan

This plan requires an understanding of command line arguments and the if

statement.

If information provided to a program from the command line is crucial to the

Michael de Raadt Programming Strategies Reference

22

successful running of the program, then the number of arguments needs to be checked
at the beginning of program execution.

#include <stdio.h>

int main(int argc, char *argv[]) {

 // Check for the correct number of arguments

 if (argc < 2) {

 printf("USAGE: %s secondArgument\n", argv[0]);

 exit(1);

 }

 // Rest of program

 ...

}

The arguments to the main() are argc (the number of command line arguments)
and argv (an array of strings, each containing and argument). The code above shows
a test for the minimum number of command line arguments needed. In this case the
program expects two arguments and any extras will be ignored. If the user runs the
program and does not supply a second argument, then an error message is output and
the program exits. Note that the name of the executable file will be stored in
argv[0] and this is used in the error message; the name of the executable could
change, but the error message will always be correct.

Once the number of command line arguments has been checked, the validity of the

values supplied may then also need to be checked.

Plan 17. File Use Plan

This plan requires an understanding of files and the if statement.

When using input files, where data sourced from those files is critical to the running

of a program, the following 5 Step Plan should be taken. This plan takes checks that

the file is available for use. It closes the stream when it is no longer needed; this is

important to avoid data loss.

1 Create a stream (FILE) pointer

FILE *inputStream;

2 Open a file and attach the stream

inputStream = fopen("myfile.txt","r");

3 Test the stream, this testing the file opening

if (inputStream == NULL) {

 printf("Error opening file");

 exit(1);

}

4 Use the stream for input or output (this will of course vary according to the needs

of the input stream)

5 Close the stream

fclose(inputStream);

Michael de Raadt Programming Strategies Reference

23

Plan 18. Recursion Plans (single- and multi-branching)

This plan requires an understanding of the if statement and calling functions.

A recursive function is one which calls itself, either directly or indirectly. Recursive

functions are very simple, but can achieve quite complex solutions by solving a

problem a small part at a time. Recursion is a way of achieving repetition in a

program.

Recursive functions have two parts: a stopping case and a recursive case. An if

statement is used to determine which case should be used as shown in the skeleton

below.

int exampleRecursiveFunction(...ARGUMENTS...) {

 // Stopping case

 if(TEST TO SEE IF RECURSION SHOULD STOP) {

 ...;

 }

 // Recursive case

 else {

 ...

 exampleRecursiveFunction(...);

 ...

 }

}

The recursive case contains a recursive function call. Each time the recursive function

is called, the arguments passed should be slightly different to those used to call the

current function. In that way progress is made towards the end of recursion.

The stopping case is reached when some end has been achieved. It contains no further

recursive function calls.

The following function is a recursive function that counts down from any positive

number to zero.

void countDown(unsigned int number) {

 // Stopping case

 if(number == 0) {

 printf("0\n");

 }

 // Recursive case

 else {

 printf("%i\n", number);

 countDown(number - 1);

 }

}

The stopping case for this function occurs when the value of number is zero. If we

called this function once and passed it the value zero, it would use the stopping case

immediately and end. If a greater number is passed the recursive case will be used and

the recursive function call within that passes a number one less each time. In this way

the stopping case will eventually be reached.

Michael de Raadt Programming Strategies Reference

24

We could start the recursive process, starting at the number 3, by calling the

countDown() function from the main() and passing the value 3.

int main() {

 // Start the count down at 3

 countDown(3);

}

The output of this program would be as follows.

% a.out

3

2

1

0

%

Below is an example of another recursive function that can be used to calculate

factorials. The factorial of an integer is the integer multiplied by all the positive

integers less than it to one. We denote the factorial of a number using an exclamation

(!) like as follows.

5! = 5 x 4 x 3 x 2 x 1

The factorial for 4! can be expressed as follows.

4! = 4 x 3 x 2 x 1

If we wanted to, we could now express 5! as follows.

5! = 5 x 4!

You can see the recursive nature of this equation already. We can make this a general

equation as follows. This is our recursive case.

n! = n x (n-1)!

We also need to express a stopping case for this, which is when n is 1.

1! = 1

This is a mathematical definition of a recursive process. If we were to run it through

for say 4! it would look as follows.

4! = 4 x 3!

3! = 3 x 2!

2! = 2 x 1!

We know that 1! is equal to one. We can now start working our way back up.

2! = 2 x 1! → 2 x 1 → 2

3! = 3 x 2! → 3 x 2 → 6

4! = 4 x 3! →4 x 6 → 24

So 4! is 24. We can write a function that calculates factorials using the process we

have described as follows.

Michael de Raadt Programming Strategies Reference

25

int factorial(unsigned int number) {

 // Stopping case

 if (number <= 1) {

 return 1;

 }

 // Recursive case

 else {

 return number * factorial(number – 1);

 }

}

You will notice that with this function, as well as actions being achieved on the way

to the stopping case, calculations are happening through the return values after the

stopping case has been reached and while working back to the original function call.

In order to complete the expression in the recursive case…

 return number * factorial(number – 1);

…the factorial function needs to be called. We must wait for this function to end and

return a result before we can complete the expression.

This function is an example of single branching recursion. The recursive case contains

only a single function call, so the recursive process will continue until a single

stopping case is reached, after which the calls will roll back to the original function

call.

A multi-branching recursive function contains more than one recursive function call

in the recursive case. This is useful for problems where from a particular point there

may be several following points that need to be probed and from each of those points

further points need to be probed and so on. There may be multiple stopping points that

can be reached in such cases also. Consider for example, a directed graph. A directed

graph is described by its points and the vertices between points that run in one

direction only. The vertices are like one-way streets that join one place to another.

The picture below describes a directed graph. The starting point is 1 and the ending

point is 5. We can represent this information textually as shown with each vertex

having a starting and ending point and a series of directed vertices that make up the

graph.

 1

5

1 2

1 3

2 5

3 5

1 4

1 5

1
2

3

5

4

Michael de Raadt Programming Strategies Reference

26

Our task is to find how many paths lead from the starting point to the ending point

assuming that there are no cycles in the graph. We can represent a graph as follows.

struct directedGraph { // Describes a directed graph

 vertex vertices[MAX_VERTICES]; // The vertices that make up the graph

 int numVertices; // The number of vertices

 int startPoint; // The starting point

 int endPoint; // The end/target point

};

We can then create a recursive function that, when started at the start point, will

discover how many paths lead to the end point.

int countPaths(directedGraph graph, int currentPoint) {

 int countPathsFromHere=0; // Paths in the graph starting here

 // Stopping case

 if(currentPoint == graph.endPoint) {

 // A complete path has been found

 return 1;

 }

 else {

 // Probe all paths that start here

 for(int i=0; i<graph.numVertices; i++) {

 if(graph.vertices[i].from == currentPoint) {

 countPathsFromHere += countPaths(

 graph,

 graph.vertices[i].to

);

 }

 }

 // Return the number of completed paths staring here

 return countPathsFromHere;

 }

}

Assuming we have read in a graph into a structure variable called graph we could

start this recursive process as follows, printing out the number of paths returned.

printf("%i\n", countPaths(graph,graph.startPoint));

Recursion is a less efficient way of achieving repetition than when using loops.

However when a problem is being solved that is recursive by nature, writing recursive

solutions can be far simpler than writing an iterative solution for the same

functionality. Where the depth of recursion is on too deep, recursive solutions can be

quite acceptable.

Michael de Raadt Programming Strategies Reference

27

Strategies Index

Abutment .. 3

Algorithms

bubble sort ... 19

search ... 18

Average Plan .. 3

Bubble Sort Algorithm 19

Counter Controlled Loop Plan 10

Counting using arrays 16

Cycle Position Plan... 6

Divisibility Plan .. 4

File Use Command Line Arguments Plan 21

File Use Plan .. 22

Five Step File Use Plan 22

Guarding Exceptions Plans 9

Guarded Division Plan 9

Incorporating Plans

abutment .. 3

merging .. 3

nesting .. 3

Initialisation Plan .. 7

Looping

fixed repitions .. 10

indefinitely ... 11

Merging .. 3

Min/Max Plans ... 15

Nesting ... 3

Number Decomposition Plan.......................... 7

Plan Integration .. 3

Plans

average ... 3

command line arguments 21

count .. 12

count occurrences of values 16

counter controlled loop 10

cycle position ... 6

divisibility .. 4

file use .. 22

five step file use 22

guarded division ... 9

integration .. 3

intialisation ... 7

maximum ... 15

minimum .. 15

number decomposition 7

primed sentinel controlled loop 11

recursion ... 23

searching .. 18

sort .. 19

sum ... 12

tallying ... 16

triangular swap ... 8

validation .. 13

Primed Sentinel Controlled Loop Plan 11

Recursion .. 23

example .. 24

multi-branching .. 25

plans ... 23

single branching 25

Recursion Plans ... 23

Search Algorithm .. 18

Sum and Count Plans 12

Swapping .. 8

Tallying Plan ... 16

Triangular Swap Plan 8

Validation Plan ... 13

