Michael de Raadt Programming Strategies Reference

Programming Strategies
Reference

Michael de Raadt

Michael de Raadt Programming Strategies Reference

Introduction

This document contains a number of useful strategies relevant to an introductory
programming course, but also necessary to solve problems of a more complex nature.
The list is not complete, but contains strategies that are well defined and malleable
enough be manipulated to suit particular problems.

This appendix should be seen as a tool-kit for solving problems at a sub-algorithmic
level. The plans at this scale usually do not constitute an entire algorithm (although
some approach this level) but usually form part of a greater algorithm.

This reference is not meant to be a complete curriculum; it is merely a short reference
guide.

Certain programming language knowledge (constructs and functions) are required
before each plan can be applied. These dependencies are listed in italics at the
beginning of each plan.

Table of Contents

PIaN INTEGIATIONueiiiiieeeet bbbttt 3
Plan 1. AVErage Plan.........ccoooiiiiiiic ettt 3
Plan 2. DIVISIDHITY PIaNcoiiiiiie e 4
Plan 3. Cycle POSItION PlaNc.ccoioiiiieiecic s 6
Plan 4. Number Decomposition PIan............cccceiiiiiiiiiiiiieecec e, 7
Plan 5. INitialiSation PIANcooiiiiiiiiiiiee e 7
Plan 6. Triangular SWap Plan..........cccoiiiiiiiiii e 8
Plan 7. Guarded Exception Plans (including Guarded Division Plan) 9
Plan 8. Counter Controlled LOOP Plan ... 10
Plan 9. Primed Sentinel Controlled Loop Planc.cccooveieiicii i, 11
Plan 10. Sum and CouNt PIANScoviieiieiieie e 12
Plan 11. Validation PIaN...........ccooiiiiiiieieee e 13
Plan 12. MiN/MaxX PIaNnS.........cccooiiiieiiie ettt 15
Plan 13. TallyiNg Plan ..ottt 16
Plan 14. Search AlGOrithmc.cooiiiiii s 18
Plan 15. Bubble Sort AIgOrithm...........cccoiiiiiicce e 19
Plan 16. Command Line Arguments Plan...........cccociiiiiiiiiiei e 21
Plan 17. File USE PIaNooiiiiiieee et 22
Plan 18. Recursion Plans (single- and multi-branching)..........ccccociiiiiiiiiiinn, 23
SErALEGIES INUBX .. .eiiiiitii ettt e et e et e e sr e e be e sneesnne e 27

Michael de Raadt Programming Strategies Reference

Plan Integration

Before introducing the plans, it is important to discuss how plans can be integrated
into a whole solution. There are three ways of combining plans.

Abutment

Abutment is placing plans or steps within plans one after the other. The sequence of
these defines the necessary order that must be followed to be successful. For example,
if we wish to perform calculations on user inputs, we must first get the inputs before
we can perform the calculation.

Merging

Often two plans need to be achieved together. Step within the two plans may be
intertwined in their order so that they can be achieved together. A processor can only
achieve one instruction at a time so these steps cannot be achieved simultaneously,
but the steps can be placed one after another in arbitrary order. For example, if we
were wishing to calculate an average of a set of numbers we need to count the
numbers and sum the numbers. Rather than inputting and processing the set of
numbers twice, we can merge these two plans and achieve them together.

Nesting

Where one plan is contained within another, the inner plan is said to be nested inside
the outer plan. For example, if we were summing numbers we may nest the summing
plan within one of the specific looping plans. If we were to calculate an average, we
may nest this within a Guarded Division plan to avoid division by zero in the average
calculation.

Plan 1. Average Plan

This plan requires an understanding of the division operator.

Finding the average of a series of numbers is a common task in programming. To
calculate the average we need the sum of the numbers and the count of the numbers.
Assuming we have these two values we calculate the average by dividing the sum by
the count.

L]
= average = sum / count

Here is an example in the context of a full program.

= #include <stdio.h>

int main() {

int sum = 15; // Stores the some of some numbers
int count = 3; // Stores the count of those numbers
int average; // Will store the calculated average

// Calculate the average
average = sum / count;

// Output the average
printf ("Average: %i\n", average);

Michael de Raadt Programming Strategies Reference

Here is the output of the above program.

Average: 5

Plan 2. Divisibility Plan

This plan requires an understanding of the mod operator and selection statements.

If we wish to see if one number is evenly divisible by another, we can use the mod
operator. If this operator produces a result of zero we know that the first operand is
divisible by the second. The mod operator gives us the remainder after division. If
there is no remainder we know that the first operand is divisible by the second. In a
real world application, if we were to group objects, say apples, we may wish to know
if we can form complete groups from the number of apples at hand. If we have 12
apples we can divide this into 4 groups of 3 with no remainder.

& @ @OE

We can apply the same to numbers in code, for example...
12 % 3 resultsin 0 so we cansay 12 is divisible by 3

We can also see when a number is not divisible by another. If we group 12 apples in
to groups of 5 we are left with 2 apples remaining.

@D
O

Again we can apply the same to numbers in code, for example...

12 % 5 resultsin 2 sowe cansay 12 is not divisible by 5

Michael de Raadt Programming Strategies Reference

Here is an example in the context of a full program.

#include <stdio.h>

int main() {
int numberToCheck = 12; // A number to check for divisibility
int firstDivisor = 3; // A sample divisor to use
int secondDivisor = 5; // Another sample divisor to use
int result; // Will store the result of mod operation

// Check the divisibility using first divisor
result = numberToCheck % firstDivisor;
printf ("Result using %i: %i\n", firstDivisor, result);

// Check the divisibility using second divisor
result = numberToCheck % secondDivisor;
printf ("Result using %i: %i\n", secondDivisor, result);

}

Here is the output of the above program.

Result using 3: 0
Result using 5: 2

The above results show that 12 is divisible by 3 but 12 is not divisible by 5.
Here is a program that tests if numbers are even. An even number is divisible by two.

#include <stdio.h>

int main() {
int firstNumberToCheck

4; // Number to check divisibility by 2
int secondNumberToCheck ;

5 // Another "

// Check if first number is even
if (firstNumberToCheck%2 == 0) {
printf("%i is even\n", firstNumberToCheck) ;
}
else {
printf("%i is not even\n", firstNumberToCheck) ;
}

// Check if second number is even
if (secondNumberToCheck%2 == 0) {
printf("%i is even\n", secondNumberToCheck) ;
}
else {
printf("%i is not even\n", secondNumberToCheck) ;
}
}

Here is the output of the above program.

4 is even
5 is not even

Michael de Raadt Programming Strategies Reference

Plan 3. Cycle Position Plan

This plan requires an understanding of the mod operator.
It is possible to form a series of numbers into a cycle.

7 8 Each number will then have a relative position within
3 4 the cycle. For example we can to take a series of
\0 numbers beginning with zero and group them by fours.

5 each cycle from zero to three. In the figure above we
9 see such a cycle. The numbers are in four groups and
each group has a relative. Numbers with position 0 are
{0,4,8,...}, numbers with position 1 are

{1,5,9, ... }and so on.

We can determine the position of a number in a cycle using the mod operator. As a
general rule numbers can be brought into a cycle of size n by applying mod n.

_\d// Each number would then have a relative position within
2 1
6

X % n gives the position of x in a cycle of size n

For example if we want to create a size 3 we can apply mod 3 and we can then find
positions of numbers in this cycle.

9 % 3 gives
10 % 3 gives
11 % 3 gives
12 % 3 gives 0 ...and so on.

N B O

One useful application of this idea is to bring random numbers into a range. In the
C/C++ language random numbers are generated in a range from O to the largest
possible integer value (with 4 byte integers this is 2147483647). If we want to
generate a random number in a specified range, we can take the random number given
by the standard library function rand () and find its position in a specified cycle.

X % n gives the a value in the range 0ton-1
If we wanted to have a random number between 0 and 4 we can apply mod 5.
myRand = rand() % 5;

If we want a random number between 1 and 5 we can shift the previous range by
adding 1 to the result.

myRand = rand() $ 5 + 1;

We can also shift such a range in a negative direction. The diagram below shows a
range and how it can be visualised when shifted.

\
X%5 0

1 2 3 4 Oto4
Xx%5+1 1 2 3 4 5 1to5
1 2 -2to 2

X%5-2 -2 -1 0
!

Michael de Raadt Programming Strategies Reference

We can create a function that generates a random number between 1 and 10 as
follows.

int randltolO() {
return rand()%10 + 1;

}
We can generalise this function to apply settable upper and lower limits.

i int myRand(int lowerLimit, int upperLimit) ({
: return rand() % (upperLimit-lowerLimit+l) + lowerLimit;

}

Plan 4. Number Decomposition Plan

This plan requires an understanding of the mod and division operators.

We can use the division and mod operators to tear numbers apart. For example, if we
want to find the last two digits of 12345 we can apply mod 100. For decimal digits the
following rules apply.

x % 10 gives the last digit

x % 100 gives the last two digits

x % 1000 gives the last three digits

x % 10000 gives the last four digits ...and so on.

Applying a similar idea we can discover the first digits of a number using the division
operator. Using a 5 digit number, the following rules apply.

x / 10000 gives the first digit

x / 1000 gives the first two digits
x / 100 gives the first three digits
x / 10 gives the first four digits.

To find the third last digit of a decimal number we can apply the following operation.
: thirdLastDigit = x % 1000 / 100;

Plan 5. Initialisation Plan

This plan requires an understanding of variables and the assignment operator.
Initialisation is commonly applied within other plans.

Failing to initialise variables before they are used can lead to errors.

It is recommended that you initialise all variables when you declare them.

In the following example sum is initialised to 0 as this is an appropriate sum before
summing commences.

» int sum = 0;

Michael de Raadt Programming Strategies Reference

In some plans it may be necessary to initialise an array of items. For instance, here we
are initialised an array used to tally letters in a message.

#include <stdio.h>

int main() {
int letterCount[26]; // Array to store count of letters
int i; // Iterative counter

// Initialise array of counts

for (i=0; i<26; i++) {
letterCount[i] = 0;

}

Plan 6. Triangular Swap Plan

This plan requires an understanding of variables and the assignment operator.

Consider how you swap two items. Imagine two pencils in front of you. To swap their
positions you would pick up one with one hand, the second with your other hand and
then place each in their new positions.

Position 1 Position 2

A computer can only perform one action at a time. Now imagine that you only have
one hand; how would you swap the positions of the two pencils now? Keep in mind
also that when a variable is assigned a new value, the old value is replaced and cannot
be accessed later. Attempting to swap using the above method will result in two
copies of the same value.

> . \w
Ve Wa
\ ‘xﬁ\ \ “\l
N
iy \
S e
\"\\\ \‘* XN
heY ey

L 20.9 L0

Ay A

w0 =

Position 1 Pgsition 2 Posgition 1 Position 2 Position 1 Position 2

Temp Pos Temp Pos a Temp Pos

To achieve a swap a temporary position is needed. One of the pencils could be moved
to the temporary position; the second pencil could be moved to its new location;
finally the first pencil could be moved from the temporary position to its new
position.

Michael de Raadt Programming Strategies Reference

Here is an example in the context of a full program.

= #include <stdio.h>

int main() {
int firstPosition 5; // First position containing value to swap
int secondPosition 6; // Second position containing value to swap
int tempPosition; // Temporary position for swap

// Output the numbers after the swap
printf ("Before Swap...\n");
printf ("First: %i, Second: %i\n", firstPosition, secondPosition);

// Swap the two numbers in a triangular swap
// 1. Copy the value from the second position to temp
tempPosition = secondPosition;

// 2. Copy the value from the first position to the second
secondPosition = firstPosition;

// 3. Copy the value from the temp position to the first
firstPosition = tempPosition;

// Output the numbers after the swap
printf ("After Swap...\n");
printf ("First: %i, Second: %i\n", firstPosition, secondPosition) ;

}
Here is the output of the above program.

Before Swap...
First: 5, Second: 6
After Swap...
First: 6, Second: 5

The above results show the values are swapped and not duplicated.

Plan 7. Guarded Exception Plans
(including Guarded Division Plan)

This plan requires an understanding of the i £ statement.

When a program compiles and runs, there are still opportunities for things to go
wrong. Usually such logic errors occur around or outside boundaries of the data
being worked on. Such boundaries include:

e Absence of data where some is expected,

o Negatives or zero where positives are expected,

¢ Too much data where a finite amount is expected, and

¢ Values outside an acceptable range.

To create reliable, "bullet proof" programs, these boundary conditions need to be
considered.

There are also time where a program may encounter data that, when used in
operations, will cause the operating to stop the program.

In mathematics, if a number is divided by zero the result is undefined. If a program
attempts to divide by zero, the operating system will close the program down.
Whenever we perform a division where the second operand could be zero, we must

Michael de Raadt Programming Strategies Reference

test the second operand before performing the division and prevent the division from
taking place if it is zero.

Here is an example in the context of a full program.

int main() {
int firstOperand; // First operator for division
int secondOperand; // Second operator for division

// Gather inputs for division
printf ("Enter two integers for division: ");
scanf ("%i %i", &firstOperand, &secondOperand) ;

// Test second operand
if (secondOperand != 0) {

// Perform division
printf(
"%i divided by %i is %i",
firstOperand,
secondOperand,
firstOperand / secondOperand

}

Here is the output of the above program when the value 5 is given as the second
operand.

Enter two integers for division: 10 5
10 divided by 5 is 2

When a zero value is given for the second operand, no output is produced and the
program ends.

Enter two integers for division: 10 0

Here is another example that incorporates Guarded Division into a function which
calculates an average from a given sum and count.

int average(int sum, int count) ({

// Test against dividing by zero
if (count == 0) {
return O;

}

// Perform division as normal
else {
return sum / count;

}

Plan 8. Counter Controlled Loop Plan

This plan requires an understanding of looping constructs.

A Counter Controlled uses a counter variable which is incremented until a set number
of repetitions is achieved. The loop will continue regardless of any other event that
may occur during repetition.

The following example reads in 10 integers from a user and calculates the sum. The
program will continue regardless of what the user inputs. We usually use £or loops
to achieve counter controlled loops.

10

Michael de Raadt Programming Strategies Reference

#include <stdio.h>
const int NUMBER OF INPUTS = 10;

int main() {
int i = 0; // Loop iterator
int sum = 0; // Sum of numbers input
int userInput; // Input from user

// Calculate the sum

for (i=0; i<NUMBER OF INPUTS; i++) {
printf ("Enter a number: ");
scanf ("%i", &userlInput);
sum += userlInput;

}

// Output the sum
printf ("Sum: %i\n", sum);

}

Counter Controlled loops are often used with arrays. When this happens the loop
iterator can serve the dual purpose of being an index into the array. For an example of
this see the initialisation of an array in Plan 5.

Plan 9. Primed Sentinel Controlled Loop Plan

This plan requires an understanding of looping constructs.

A Primed Sentinel Controlled Loop allows repetition until an event takes place or
some target value (the sentinel) is discovered.

Here is an example including a primed sentinel-controlled loop. Not that the loop tests
userInput to determine if it should continue looping. The variable is being
compared to the sentinel value SENTINEL. The value of userInput is primed with
an initial user input before the loop begins. Although this adds some redundancy (the
input statement appears twice) there can be efficiency savings made when the user
enters the sentinel value in the first instance (which is not uncommon).

#include <stdio.h>
const int SENTINEL = 9999;

int main() {
int sum = 0; // Sum of numbers input
int userInput; // Input from user

// Get the first user input
printf ("Enter a number (%i to end): ", SENTINEL) ;
scanf ("%$i", &userInput) ;

// Calculate the sum

while (userInput != SENTINEL) {
sum += userlInput;
printf ("Enter a number (%i to end): ", SENTINEL) ;
scanf ("%$1i", &userInput) ;

}

// Output the sum
printf ("Sum: %i\n", sum);

11

Michael de Raadt Programming Strategies Reference

If the user where to enter the sentinel value as Body of Loop
their first input, the loop would never be entered.
The sum will also be correct as we are checking
each user input before it is added to the sum. This
avoids accidentally including the sentinel value in
the sum.

Success

Failure

Plan 10. Sum and Count Plans

This plan requires an understanding of looping constructs and initialization.

Two frequently practiced programming activities
are summing or counting values. These simple Initialise Sum or Count to zero
processes are easily achieved, but also easily
messed up. Both plans are achieved by using a
variable to accumulate the sum or count as values
are encountered. The key to both is assuring that CCL or SCL
the sum or count variable is initialised to zero.
Failing to initialise such a variable will not stop
your program from compiling. In many instances
an uninitialised variable will have a value of zero
so the program will work, but it will not work all
the time. Just remember:

INITIALISE SUM AND COUNT VARIABLES

Below is an example which inputs and sums 5 numbers from a user. Note a Counter
Controlled loop is used to control repetitions as we know how many are desired
before the looping begins.

#include <stdio.h>

Get Value

Add/Increment Sum/Count

const int NUMBER OF INPUTS = 5;

int main() {
int userInput = 0; // Input from user
int sum = 0; // Sum of inputs INITIALISED
int i; // Iterative counter

// Counter Controlled loop to repeat inputs
for (i=0; i<NUMBER_OF INPUTS; i++) {

// Prompt for input
printf ("Please enter an integer: ");
scanf ("%$1i", &userInput) ;

// Add input to sum
sum += userlnput;

}

// Output the sum
printf ("Sum of numbers entered: %i\n", sum);

12

Michael de Raadt

Programming Strategies Reference

The output of the above program will resemble the following.

Please
Please
Please
Please
Please
Sum of

enter
enter
enter
enter
enter

an
an
an
an
an

integer:
integer:
integer:
integer:
integer:
numbers entered: 1

1

2
3
4
5
5

The following is an example which counts numbers entered by a user unit the value

9999 is encountered as a sentinel.

= #include <stdio.h>

}

int main() {
int userInput = 0; // Input from user

const int SENTINEL = 9999;

int count = 0;

// Prompt for initial input

printf ("Please enter an integer:

scanf ("%i",

// Test for sentinel
while(userInput != SENTINEL)

}

printf ("You entered %i inputs\n", count);

// Count input

&userInput) ;

count++;

// Subsequent input
printf ("Please enter an integer:

scanf ("%i",

&userInput) ;

{

// Count of inputs INITIALISED

The output of the above program will resemble the following.

Please
Please
Please
Please

enter
enter
enter
enter

an
an
an
an

integer:
integer:
integer:
integer:

You entered 3 inputs

Plan 11. Validation Plan

1
2
3

9999

This plan requires an understanding of loops and the scanf () function (or
equivalent).

When dealing with inputs from users one can never
assume they will enter what is expected. It is therefore
important, for critical systems, to validate that users |
have entered what they were expected to enter, and
repeat inputs, with appropriate messages, in the case

where users enter invalid inputs.

The plan shows here prompts the user and accepts an
initial input. The value is then tested as the condition

| Initial Prompt |

Initial Input |

| Test for Valid Input (SCL) |

| Clear Input Stream |

| Error Message Prompt |

| Subsequent Input |

13

| Clear Input Stream i

Michael de Raadt Programming Strategies Reference

of a Sentinel Controlled loop where the sentinel is a valid input.
Testing for validity can take two forms:

e Testing if a valid input type has been entered, for instance, if an integer is expected, it
is important to know that one has been entered.

¢ Once the first test has been satisfied, and where a value within a specified range is
expected, then the value of the input should be tested.

The user will usually enter a valid input in the first instance, but if they do not, in the
loop an error message is output and a subsequent input is gathered. This looping can
continue indefinitely until the user enters a valid value.

After each input (within the loop and after the loop) the input stream is cleared. If the
user has entered additional, unwanted data, either accidentally or maliciously, then it
will be removed before the next input is sought.

Here is an example function that gathers a valid integer in a specified range.

int getValidIntegerInRange (int lowestAllowed, int highestAllowed) {
int userInput = 0; // Input from user
int inputsGathered = 0; // Number of inputs from scanf ()

// Prompt for initial input

printf(
"Please enter an integer between %i and %i: ",
lowestAllowed, highestAllowed

);

inputsGathered = scanf ("%$i", &userInput);

// Test for valid input

while (
inputsGathered !'=1 ||
userInput < lowestAllowed ||
userInput > highestAllowed

) |

// Clear standard input
scanf ("$*[*\n]") ;
scanf ("%$*c") ;

// Error message prompt

printf(
"Invalid input. "
"Please enter an integer between %i and %i: ",
lowestAllowed, highestAllowed

)

inputsGathered = scanf ("%$i", &userlInput)

}

return userlInput;

}

Note that where inputs are gathered from the user, the return value from scanf () is
also captured. The function scanf () will attempt to input values according to the
format string, storing the values at the addresses provided. The return value of
scanf () is not an input value, but the number of values that have been successfully
input and stored. Using this we can determine if an appropriate value has been entered
by the user. See the description of scan£ () in Appendix 1 for more detail.

14

Michael de Raadt Programming Strategies Reference

Plan 12. Min/Max Plans

This plan requires an understanding of looping constructs and the i £ statement.

To find the minimum or maximum from a number
of user inputs, it is not necessary to keep all
candidates, just the current min/max at any stage.

Initialise Max/Min
to extreme opposite

This process starts by selecting an initial value for

the min/max variable. If searching for a maximum, CCL or SCL
initialise to the minimum possible value. If

searching for the minimum, initialise to the Get Candidate
maximum possible value. In that way the first

value encountered will become the new min/max. Test: Compare to Max/Min
Alternately the first value encountered (if it can be Assign new Max/Min

guaranteed there will be a single value) can be used
as the initial value for the min/max.

As each candidate is presented within a loop (a counter controlled loop or sentinel
controlled loop) it needs to be compared with the current-max/min. If searching for a
maximum and the candidate is greater than the current maximum, then the candidate
will be assigned as the new current-maximum.

The following example inputs 5 numbers between O and the largest integer value
allowed. Inputs are gathered from a user using getvValidIntegerInRange () as
shown in Plan 11 above. The maxNumber variable is used to store the current
maximum and it is initialised to 0 which is the smallest input allowed.

#include <stdio.h>
#include <limits.h>

const int NUMBERS_TO READ = 5;
int getValidIntegerInRange (int lowestAllowed, int highestAllowed) ;

int main() {
int i; // Iterative counter
int input; // Validated Input from user
int maxNumber = 0; // Current maximum initialised to
// minimum possible value

// Get inputs from user
for(i = 0; i < NUMBERS_TO READ; i++) {
input = getValidIntegerInRange (0, INT_ MAX) ;

// Compare with current max and assign if greater
if (input>maxNumber) {
maxNumber = input;
}
}

// Output the max
printf ("The maximum was: %i\n", maxNumber) ;

}

int getValidIntegerInRange (int lowestAllowed, int highestAllowed) {

15

Michael de Raadt

Programming Strategies Reference

Note that each input is compared with the current maximum. Where a candidate is
found to be greater than the current maximum it replaces the current maximum and is

used for future comparisons.

Plan 13. Tallying Plan

This plan requires an understanding of arrays and looping constructs.

As well as being able to store individual values
in an array we can also use arrays to represent
counts of occurrences of a set of values.

For instance if | asked you to count each letter
in the sentence, "The cat sat on the mat", you
could set up a sheet and tally each letter in the
sentence. We start off with a blank sheet where
the tally each letter is empty (zero). We process
each letter in turn, crossing it off in the sentence
as it is processed. When we encounter a letter,
we place a tally mark in the box on our sheet
that relates to that letter. We can continue this
until all the letters are processed, at which stage
the number of tally marks next to each letter is
the number of occurrences of that letter.

THe ¢at gaf gnf the mat
Alll N |
B Ol
Cll P

D Q

E |l R

F S|l
G T [
H il U

I \Y

J W
K X

L Y

M Z

We can apply a similar strategy in code using an array.

CCL

Initialise Array Element to 0

CCL or SCL

Input Item to Count

Match Item to Array Element
and Increment Element

CCL

Output Element

We will create an array with enough elements to
represent the set of values we are counting. If we
are counting the letters of the alphabet we need an
array with 26 elements. Before we start counting
we must first initialise the array to be sure the
count of all values is zero.

We can then process the values, matching them to
the relevant element of our array and ‘adding
another tally mark' (incrementing the count) for
that value.

When we have processed all items of interest the
values in the array will be the counts of the items
encountered. If we wish we can output the counts
of the letters encountered.

16

Michael de Raadt Programming Strategies Reference

The following code is an example of such a strategy.

: #include <stdio.h>
» #include <ctype.h>

const int SENTINEL = 9999;

int main() {
int letters[26]; // Array for tallying letters encountered
int i; // Iterative counter
char inputletter; // Letter from user

// Initialise all array elements to 0
for (i=0; i<26; i++) {

letters[i] = 0;
}

// Process the user input until end of line
printf ("Please input a sentence...\n");
scanf ("%c", &inputLetter)
while (inputLetter != '\n') {
if (isalpha (inputLetter)) ({
letters[tolower (inputLetter)-'a']++;
}
scanf ("%$c", &inputLetter);

}

// Output occurrences of letters which have occured once or more
for (i=0; i<26; i++) {
if (letters[i] > 0) {
printf("%c: %i\n", 'a'+i, letters[i]):;
}

—~

Notice first that the array is initialised, the values are counted and then the counts are
output. See the language reference for descriptions of isalpha() and
tolower ().

The array used is an array of integers, which is appropriate as we are storing counts of
letters and not the letters themselves. The array elements are referenced by index and
the indices are integers, so this means we have to translate each character into a
number to find the array element that relates to that letter. We can associate each
alphabetic letter with a number in order starting from 'a’ being 0, 'b' being 1 and so on.
To achieve this we can convert each letter to lower case and deduct the value of 'a’ as
follows.

a' - '3’ 9 0
lbl - 'a' 9 1
'e' - 'a! 9 2
'z' - 'a' > 25

Once we have a letter's position in the alphabet we can use this as the index into the
array to access the array element that relates to that letter of the alphabet. When we
are counting a particular letter, we will translate it into a number, find the array
element and increment its value. This is achieved in the statement from the above
example shown below.

. letters[tolower (inputLetter)-'a']++;

17

Michael de Raadt Programming Strategies Reference

Plan 14. Search Algorithm

This plan requires an understanding of looping constructs and arrays.

This plan and the next are approaching the scale
of a full algorithm and could exist independently Initialise found flag
as useful functions.

The key to efficient searching is to search only
the parts of the search space (say the elements of Loop while found flag is false and
an array) necessary to discover the value sought. not at end of array

Of course, if the location of the target value is
unknown then the amount of searching required
cannot be predicted, but, if we are seeking the Compare to target,
presence of a target value we should be able to setting found flag

Get Candidate

stop searching after we discover the value. In the
case that the target value is not present, Use found flag
searching will continue until the end of the
search space is reached.

One way to achieve this is through a combination of a sentinel controlled loop that
searches for the target value as a sentinel and a counter controlled loop that stops
when the end of the search space is reached. We can use a Boolean flag to control the
test for the target value and the value of this flag after the search will tell us if the
target value is present. Here is an example function that searches an array for a target
value.

= bool search(int targetValue, int array[], int arrayLength) ({
bool found = false; // Boolean search flag
int i = 0; // Iterative counter

// Search until found or end of array
while (!'found && i<arrayLength) {

// Match array element to target value
found = array[i]==targetValue;
i++;

}

return found;

18

Michael de Raadt Programming Strategies Reference

Of course, this approach will only work if we are seeking the presence of a target
value. If we wish to count the occurrences of a value we will need to search the entire

search space, S0 no saving can be made.

int countValues (int targetValue, int array[], int arraylLength) ({

count++;
}
}

return count;

}

Plan 15. Bubble Sort Algorithm

int i; // Iterative counter
int count=0; // Times targetValue has been encountered

// Return the count of occurrences

// Search entire array for occurrences of target value
for(i = 0; i < arrayLength; i++)
if(array[i] == targetValue) {

This plan requires an understanding of looping constructs and arrays.

There are a many different algorithms
which can be used to put elements in
order. The Bubble Sort is presented
here as it is easy to comprehend and
use.

This algorithm works by looping
through the array comparing each
element with the following one, and
swapping the values where necessary.
Each pass through the array brings it
closer to being sorted. The looping
and swapping process must occur as

array), it is guaranteed to be sorted.

CCL (n -1 passes)

CCL (a single pass)

Test if adjacent elements
are out of order

Swap out of order elements

many times needed to ensure the array is
completely sorted. If we loop through the array n-1 times (where n is the length of the

The process can be summarized as follows.

Start at beginning of the array
If out of order swap

If out of order swap

constitutes a single pass.

Compare first and second elements

Compare the second and third elements

Continue comparing adjacent pairs in the array, from beginning to end; this

e Perform n-1 passes to completely sort the array.

19

Michael de Raadt Programming Strategies Reference

Consider the following array.

7184|592

Starting at the beginning we compare the first two values. They are in order so we do
not swap them. The second and third values are out of order and must be swapped.
The outcome is shown below.

7/14]|8]15]|2
A

We continue comparing and swapping adjacent values if needed until we get to the
end of the array.

7114|5182
A
7114//5]|2]|8

A

The state of the array after one pass is shown above. We will complete four passes
through the array. The state of the array after each pass is shown below.

After second pass 4 5 2 7 8

After third pass 4 2 5 7 8

After fourth (final) pass 2 4 5 7 8

20

Michael de Raadt Programming Strategies Reference

The following program will perform a bubble sort on an array of integers to put them
in ascending order.

#include <stdio.h>
const int MAX LENGTH = 5;

int main() {
int array[MAX LENGTH] = {9,8,2,5,4}; // Unsorted array
int i, j; // Loop iterators
int temp; // For swapping

// Pass through the array MAX LENGTH-1 times
for(i = 0; i < MAX LENGTH-1; i++){

// For each pair of consecutive numbers
for(j = 0; j < MAX LENGTH-1; j++) {

// Test if the pair is out of order
if (array[j] > array[j+1]) {

// Swap using triangular swap
temp = array[jl:;

array[j] = array[j+1];
array[j+1l] = temp;

}

// Output the array after sorting

for(i = 0; i < MAX LENGTH; i++){
printf("%i ",arrayl[i])

}

printf("\n");

—

Notice the above code contains two for loops, one inside the other. The outer loop
ensures that n-1 passes are performed. Each iteration of the outer loop, the inner
nested loop compared each adjacent value in the array and swaps it if necessary.

Bubble sort is not the most efficient sorting algorithm. For large and unordered data
faster sorting algorithms are available. The efficiency of the Bubble Sort algorithm
can be improved by applying the following two modifications.

¢ Reduce the number of comparisons by one for each pass. After the first pass the
greatest value will be pushed to the rightmost element. After two passes, the final two
elements will contain the two greatest values in sorted order and so on. To achieve
this, the value of i can be deducted from the upper limit of the inner loop.

j < MAX_LENGTH—l—i;

e For an array that contains values that are nearly already sorted, it is possible to reach
a sorted state before n-1 passes have been made. The array can be determined to be in
a sorted state when a complete pass has been performed in which no swaps are made.
A Boolean flag swapsMade can be used which is set to £alse at the beginning of
each pass. If it is still false at the end of the pass, no swaps have been made and the
array is in sorted order. This flag can be incorporated into the test of the outer loop.

Plan 16. Command Line Arguments Plan

This plan requires an understanding of command line arguments and the i f
statement.

If information provided to a program from the command line is crucial to the

21

Michael de Raadt Programming Strategies Reference

successful running of the program, then the number of arguments needs to be checked
at the beginning of program execution.

#include <stdio.h>
int main(int argc, char *argv[]) {

// Check for the correct number of arguments

if (arge < 2) {
printf ("USAGE: %s secondArgument\n", argv[0]);
exit(l);

}

// Rest of program

}

The arguments to the main () are argc (the number of command line arguments)
and argv (an array of strings, each containing and argument). The code above shows
a test for the minimum number of command line arguments needed. In this case the
program expects two arguments and any extras will be ignored. If the user runs the
program and does not supply a second argument, then an error message is output and
the program exits. Note that the name of the executable file will be stored in
argv[0] and this is used in the error message; the name of the executable could
change, but the error message will always be correct.

Once the number of command line arguments has been checked, the validity of the
values supplied may then also need to be checked.

Plan 17. File Use Plan

This plan requires an understanding of files and the if statement.

When using input files, where data sourced from those files is critical to the running
of a program, the following 5 Step Plan should be taken. This plan takes checks that
the file is available for use. It closes the stream when it is no longer needed; this is
important to avoid data loss.

1 Create a stream (FILE) pointer

: FILE *inputStream;

2 Open a file and attach the stream

: inputStream = fopen("myfile.txt","r");

3 Test the stream, this testing the file opening

if (inputStream == NULL) {
printf ("Error opening file");
exit(1l);

}

4 Use the stream for input or output (this will of course vary according to the needs
of the input stream)

5 Close the stream

: fclose (inputStream) ;

22

Michael de Raadt Programming Strategies Reference

Plan 18. Recursion Plans (single- and multi-branching)

This plan requires an understanding of the i £ statement and calling functions.

A recursive function is one which calls itself, either directly or indirectly. Recursive
functions are very simple, but can achieve quite complex solutions by solving a
problem a small part at a time. Recursion is a way of achieving repetition in a
program.

Recursive functions have two parts: a stopping case and a recursive case. An if
statement is used to determine which case should be used as shown in the skeleton
below.

int exampleRecursiveFunction(...ARGUMENTS...) {

// Stopping case
if (TEST TO SEE IF RECURSION SHOULD STOP) {

-

}

// Recursive case
else {

exampleRecursiveFunction(...);

}

The recursive case contains a recursive function call. Each time the recursive function
is called, the arguments passed should be slightly different to those used to call the
current function. In that way progress is made towards the end of recursion.

The stopping case is reached when some end has been achieved. It contains no further
recursive function calls.

The following function is a recursive function that counts down from any positive
number to zero.

void countDown (unsigned int number) {

// Stopping case

if (number == 0) {
printf ("0\n") ;

}

// Recursive case

else {
printf("%i\n", number) ;
countDown (number - 1) ;

}

The stopping case for this function occurs when the value of number is zero. If we
called this function once and passed it the value zero, it would use the stopping case
immediately and end. If a greater number is passed the recursive case will be used and
the recursive function call within that passes a number one less each time. In this way
the stopping case will eventually be reached.

23

Michael de Raadt Programming Strategies Reference

We could start the recursive process, starting at the number 3, by calling the
countDown () function from the main () and passing the value 3.

int main() {

// Start the count down at 3
countDown (3) ;

The output of this program would be as follows.

$ a.out

O RrNW

Below is an example of another recursive function that can be used to calculate
factorials. The factorial of an integer is the integer multiplied by all the positive
integers less than it to one. We denote the factorial of a number using an exclamation
(1) like as follows.

Sl=5x4x3x2x1
The factorial for 4! can be expressed as follows.
41=4x3x2x1
If we wanted to, we could now express 5! as follows.
5! =5x4!

You can see the recursive nature of this equation already. We can make this a general
equation as follows. This is our recursive case.

n!=nx (n-1)!
We also need to express a stopping case for this, which is when n is 1.
=1

This is a mathematical definition of a recursive process. If we were to run it through
for say 4! it would look as follows.

41 =4 x 3!
31=3x2!
21=2x 1!

We know that 1! is equal to one. We can now start working our way back up.
21=2x11>2x1>2
31=3x21>3x2>6
41 =4x3! 24x6 > 24

So 4! is 24. We can write a function that calculates factorials using the process we
have described as follows.

24

Michael de Raadt Programming Strategies Reference

int factorial (unsigned int number) ({

// Stopping case
if (number <= 1) {
return 1;

}

// Recursive case
else {
return number * factorial (number - 1);
}
}

You will notice that with this function, as well as actions being achieved on the way
to the stopping case, calculations are happening through the return values after the
stopping case has been reached and while working back to the original function call.
In order to complete the expression in the recursive case...

E return number * factorial (number - 1);

...the factorial function needs to be called. We must wait for this function to end and
return a result before we can complete the expression.

This function is an example of single branching recursion. The recursive case contains
only a single function call, so the recursive process will continue until a single
stopping case is reached, after which the calls will roll back to the original function
call.

A multi-branching recursive function contains more than one recursive function call
in the recursive case. This is useful for problems where from a particular point there
may be several following points that need to be probed and from each of those points
further points need to be probed and so on. There may be multiple stopping points that
can be reached in such cases also. Consider for example, a directed graph. A directed
graph is described by its points and the vertices between points that run in one
direction only. The vertices are like one-way streets that join one place to another.

The picture below describes a directed graph. The starting point is 1 and the ending
point is 5. We can represent this information textually as shown with each vertex
having a starting and ending point and a series of directed vertices that make up the
graph.

25

Michael de Raadt Programming Strategies Reference

Our task is to find how many paths lead from the starting point to the ending point
assuming that there are no cycles in the graph. We can represent a graph as follows.

i struct directedGraph ({ // Describes a directed graph

: vertex vertices[MAX VERTICES]; // The vertices that make up the graph
: int numVertices; // The number of vertices

: int startPoint; // The starting point

: int endPoint; // The end/target point

}

We can then create a recursive function that, when started at the start point, will
discover how many paths lead to the end point.

int countPaths (directedGraph graph, int currentPoint) {
int countPathsFromHere=0; // Paths in the graph starting here

// Stopping case
if (currentPoint == graph.endPoint) {

// A complete path has been found
return 1;

}

else {

// Probe all paths that start here
for (int i=0; i<graph.numVertices; i++) {

if (graph.vertices[i] .from == currentPoint) ({
countPathsFromHere += countPaths (
graph,

graph.vertices[i] . to

)
}

// Return the number of completed paths staring here
return countPathsFromHere;

}

Assuming we have read in a graph into a structure variable called graph we could
start this recursive process as follows, printing out the number of paths returned.

E printf ("%$i\n", countPaths (graph,graph.startPoint)) ;

Recursion is a less efficient way of achieving repetition than when using loops.
However when a problem is being solved that is recursive by nature, writing recursive
solutions can be far simpler than writing an iterative solution for the same
functionality. Where the depth of recursion is on too deep, recursive solutions can be
quite acceptable.

26

Michael de Raadt

Programming Strategies Reference

Strategies Index

ADUIMENT ... 3
Algorithms

bubble SOrt ... 19

SBAICN .. 18
Average Plan ... 3
Bubble Sort Algorithmccocovviviiiiennns 19
Counter Controlled Loop Plan.........c..c......... 10
Counting USING arraysS........cccevverereeeereereennns 16
Cycle Position Plan...........cccooeniniiienennn 6
Divisibility Plan.........cccoeviniiiiniiicn 4
File Use Command Line Arguments Plan.... 21
File Use Plancocoovveiviiiiiiiiiicicies 22
Five Step File Use Planc.ccccooevvivicieine 22
Guarding Exceptions Plans...........ccccccveenennn 9

Guarded Division Plan...........ccccoeeviineinns 9

Incorporating Plans

abutment ... 3

MEIGING eeivveiieiee e e e srresre e ee e 3

NESEING. .. eivveeie e 3
Initialisation Plan...........cccccoovevnviiicinicnin, 7
Looping

fixed repitionsccoevviiiciiciiiis 10

indefinitely ..o, 11
MEIGING .. 3
Min/Max PIanscccocovenvicenivninneeienenees 15
NESHING c.vvecvrece e 3
Number Decomposition Plan............ccccecu..... 7
Plan Integrationcccceeeveevinveevecie e 3
Plans

AVEIAGR ... vt e ittt ste s 3

command line arguments.............ccccvenee. 21

COUNE .o 12

count occurrences of values..................... 16

counter controlled 100pcccccoevveinenne 10
cycle position ..o 6
AIVISIDIILY oo 4
il USE ..o 22
five step file USE ..cvevvevvvicicccece 22
guarded diVISIONccocevveevrireieiese e 9
INTEQrationccccvcveierce e 3
INtAliSation.........coeovvveircee e 7
MAXTMUM oo 15
MINTMUM L 15
number decompositionccccceveveverenns 7
primed sentinel controlled loop................ 11
FECUFSION ...ttt 23
SEANCNING ..o 18
SO 19
SUM .ot 12
tallYing oo 16
triangular SWapcccveevevveveeieeie e 8
Validation..........cooevvincinicec 13
Primed Sentinel Controlled Loop Plan 11
RECUISION ..o 23
eXamPIe ..o 24
multi-branchingcccccovveveiienciiennn 25
PIANS ..o 23
single branching ..., 25
Recursion PIans..........cccovcvicninccncnn, 23
Search Algorithm ... 18
Sumand Count PIans...........cccccvvvreinennennnn 12
SWAPPING c.veveveiieiee e 8
Tallying Plan........ccccooevveveeiecccc e, 16
Triangular Swap Plan.........ccccoovviiiincncnne 8
Validation Plan ... 13

27

